STUDY ON APPLICABILITY OF GLOBAL NEUTRON OPTICAL MODEL POTENTIALS TO A NUCLEAR MASS RANGE FROM SODIUM TO GOLD AND TO ENERGIES FROM 1 TO 50 MeV

#### Hisao Yamakoshi

Ship Research Institute 6-38-1 Shinkawa, Mitaka, Tokyo 181, Japan

Abstract: Applicability of neutron optical model potentials was studied by comparing calculated results with experimental data on  $\sigma_t$ ,  $\sigma_{non}$ ,  $d\sigma_{el}/d\Omega$ , the s-wave and the p-wave neutron strength functions: So and Sl, and the potential scattering radii R' for isotopes and elements in a wide mass range from sodium to gold. The quantities So, Sl and R' were calculated at 10 keV; the quantities  $\sigma_t$ ,  $\sigma_{non}$  (or  $\sigma_{comp}$ ) and  $d\sigma_{el}/d\Omega$  were calculated in a wide energy range from about 1 MeV to 50 MeV. The neutron OMPs considered in the present study were those potentials reported by Becchetti and Greenlees, Hilmore and Hodgson, Rapaport et. al., and by the author. In the comparison, results of other author's analyses were taken into account as reference data. Conclusions are : (1) the potential by Wilmore and Hodgson has a tendency of overestimating the total cross section near 50 MeV, (2) the potential by Rapaport has a tendency of underestimating the total cross section near 50 MeV, (3) the Rapaport's potential seems to underestimate the nonelastic cross sections of nuclei with large mass numbers such as 181Ta and 197Au. (4) the potential by the author seems to be more advantageous as a global potential than the other potentials considered in the present study.

(neutron, optical model potential, global, applicability, 50 MeV,  $\sigma_t$ ,  $\sigma_{non}$ ,  $d\sigma_{el}/d\Omega$ )

# Introduction

The present applicability study stems from the view point that a good global neutron OMP is worthy of finding for the purpose of keeping a consistency among neutron nuclear data predicted for those nuclei of which experimental nuclear data are not available.

The Becchetti-Greenlees potential and the Hilmore-Hodgson potential were adopted as well known potentials. As hopeful potentials, both Rapaport potential and the author's potential were also considered in the present study.

The quantities  $\sigma_t$ ,  $d\sigma_{el}/d\Omega$  and  $\sigma_{comp}$  were calculated with ELIESE-3 code<sup>5</sup>as well as the quantities  $S_0$ ,  $S_1$  and R'. In the calculation of  $\sigma_{non}$ , GNASH code<sup>5</sup> was utilized. Although the main purpose of the present study is the applicability of these potentials to the larger energy region from 1 MeV to 50 MeV, behavior of these potentials in lower energy region was also taken into account by calculating  $S_0$ ,  $S_1$  and R' at 10 keV as well as  $\sigma_t$  bellow 1 MeV.

### Optical Model Potentials Adopted

The potential parameters for the adopted OMPs are tabulated in Table 1. The potential reported by the author is referred to the Yamakoshi potential for convenience of later discussion. The imaginary surface part of this potential has the Gaussian form, while the others have the derivative Woods-Saxon form for their imaginary surface terms. In the case of the Rapaport potential, the parameter set A in his report was chosen because this set is adopted in the Hansen's optical potential analysis.

# Comparison

Calculated total cross sections for <sup>27</sup>Al, Cu, <sup>181</sup>Ta and 197Au are compared with the experimental data in Figs.1 through 4. In the case of Cu, the result of coupled channel analysis by <sup>8</sup> Delaroche et. al. is also compared as reference data. The Yamakoshi potential yields very close

result to the Delaroche's result. As a typical example, the Hilmore-Hodgson potential overestimates the total cross section of Cu near 50 MeV. Similar tendency can be seen in the case of 27Al. For the neutron energies lower than 1 MeV, the Yamakoshi potential seems to be in better agreement with experimental data than the other potentials.

### onor

The nonelastic cross section  $\sigma_{\text{non}}$  can be calculated by subtracting the calculated compound elastic part from the calculated compound nucleus formation cross section  $\sigma_{\text{comp}}$  as shown in Fig.5 where  $\sigma_{\text{non}}$  for sodium is calculated by using the Yamakoshi potential. Consequently, calculated  $\sigma_{\text{comp}}$  should not be less than the experimental data of  $\sigma_{\text{non}}$  if the calculated  $\sigma_{\text{non}}$  is in good agreement with the experimental data of  $\sigma_{\text{non}}$ . As seen in Figs.6 and 7, the calculated  $\sigma_{\text{comp}}$  values are certainly larger than or equal to the measured  $\sigma_{\text{non}}$  data. However, for eavy nuclei such as 181 Ta and 197Au, the values of  $\sigma_{\text{comp}}$  calculated by using the Rapaport potential are smaller than the measured data of  $\sigma_{\text{non}}$  in some neutron energy range as seen in Figs.8 and 9.

# $d\sigma_{el}/d\Omega$

Calculated results for the case of En = 14.6 MeV are compared with experimental data in Fig.10 for six isotopes. Results of analysis by Hansen et. al. with potential reported by Breiva et. al? and with the potential reported by Jeukennd et. al. are also compared in this figure. In the case of small scattering angle, results by the Yamakoshi potential are very close to those with the Jeukenne potential which is referred to as JLM in this figure.

Incident energy dependence of the calculated results is compared with that of measured data in Fig.11 for the case of <sup>63</sup>Cu. Results of the coupled channel analysis by Delaroche et. al. are also compared in this figure. For scattering angles near 0 degrees, Delaroche's results are very close to the results with Yamakoshi potential rather than those with other OMPs.

### R', So and S1

Calculated results of R',  $S_0$  and  $S_1$  are compared with experimental results in Figs. 12 through 14. The Rapaport potential seems to enhance the mass number dependences of experimental results for these quantities. Especially, around A = 180, R' and  $S_0$  calculated with this potential seems to be too large in comparison with the experimental data.

### Discussions

Judging from the comparison of  $\sigma_t$  between calculation and measurement near 50 MeV for aluminum and copper, the Wilmore-Hodgson potential seems to overestimate the total cross sections of other nuclei around 50 MeV. On the other hand, the Rapaport potential seems to under estimate the total cross sections around 50 MeV.

The underestimation of  $\sigma_{comp}$  for  $^{181}{\rm Ta}$  and 197Au by using the Rapaport potential may be an evidence that this potential is not applicable to nuclei with nuclear mass number as large as gold.

The Becchetti-Greenlees potential seems to overestimate a bit the higher energy part of the nonelastic cross section. However, this overestimation can be large eneough to cause a large amount of over estimation in cross sections for reactions such as (n,n'), (n,2n), (n,p) and  $(n,\alpha)$ .

The Yamakoshi Potential has ever been applied to the analyses of both sodium and iron nuclear data for JENDL-3. From the experience of the application, this potential is thought to be a good potential for nuclei from sodium to iron. It may be said as a result of the present study that one can apply this potential to nuclei as heavy as gold.

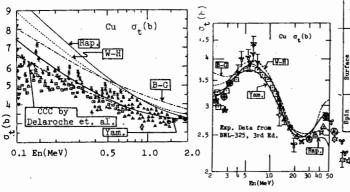
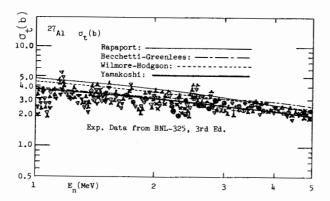




Fig. 1 Comparison of calculated total cross sections for Cu with experimental data



## Conclusions

As a summary, following conclusions are derived:

- (1) The Wilmore-Hodgson potential has a tendency of overestimating the total cross section near 50 MeV.
- (2) The Rapaport potential underestimates very much the values of neutron nonelastic cross section of <sup>181</sup>Ta and <sup>197</sup>Au.
- (3) The Yamakoshi potential seems to be more advantageous as a global potential than the other potentials considered in the present study.

### REFERENCES

- F.D.Becchetti, Jr, and G.W.Greenlees: Phys. Rev. 182, 1190 (1969)
- 2. D.Wilmore and P.E.Hodgson: Nucl. Phys. <u>55</u>, 673 (1964)
- 3. J.Rapaport et. al.: Nucl. Phys. A330, 15 (1979)
- 4. H. Yamakoshi: JAERI-M 5984, 159 (1975)
- 5. S.Igarashi: JAERI 1224, 1 (1972)

1....

- 6. P.G. Young and A.D. Arther: GNASH, LA-6974 (1977)
- 7. Hansen et. al.: Phys. Rev. <u>C31</u>, 111 (1985)
- 8. J.P.Delaroche et.al.: Nucl. Phys. A390, 541 (1982)
- F.A.Brieva and J.R.Rook: Nucl. Phys. <u>A291</u>, 299 (1977), <u>A291</u>, 317 (1977)
- 10. J.P. Jeukenne et. al.: Phys. Rev. C16, 80 (1977)

Table 1. Potential Parameters for Adopted OMPs

|   | L    | _     | _    |                 | Becchetti-Greenleee                              | Wilmore-Hödgson                         | Rapaport                                         | Yamakoshi **                 |
|---|------|-------|------|-----------------|--------------------------------------------------|-----------------------------------------|--------------------------------------------------|------------------------------|
|   | 9    | -     |      | ٧               | 56.3 - 0.328 - 245 <sup>†</sup>                  | 47:01 - 0:26TE<br>- 0.008E <sup>2</sup> | 54.19 - 0.33E<br>-(22.7 - 0.19E)§                | 46 - 0.33E                   |
|   |      | Real  | Pa   | ro              | 1.17                                             | r <sub>o</sub>                          | 1.198                                            | 1.286                        |
|   |      |       |      | a <sub>0</sub>  | 0.75                                             | 0.66                                    | 0.663                                            | 0.62                         |
|   |      | 1 ne  | ,    | w .             | -1.56 + 0.22E,<br>or 0, which ever<br>greater    | -                                       | 0.0; E < 15 MeV,<br>-4.3 + 0.38E;<br>E > 15 MeV. | 0.125E - 4x10 E <sup>2</sup> |
|   | Н    | 88    | Part | r,              | 1.26                                             | -                                       | 1.295                                            | 1.286                        |
|   | Ц    |       |      | a <sub>v</sub>  | 0.58                                             |                                         | 0.59                                             | 0.62                         |
|   |      | nary  |      | ₩ <sub>D</sub>  | 13 - 0.25E - 125,<br>or 0, which ever<br>greater | 9.52 - 0.053E                           | 4.28 + 0.4E<br>-12.85; E<15MeV,<br>14 - 0.39E    | 14 - 0.2E                    |
|   | urfa | neg 1 | ij   | r <sub>D</sub>  | 1.26                                             | r∳<br>D                                 | -10.45; E>15 MeV.<br>1.295                       | 1.390                        |
|   | ά    | Ħ 1   |      | a <sub>D</sub>  | 0.58                                             | 0.48                                    | 0.59                                             | 0.7                          |
| ٦ |      | ᇻ     | 7    | v <sub>so</sub> | 6.2                                              | -                                       | 6.2                                              | 6.0                          |
|   |      | orbit | t    |                 | 1.01                                             | -                                       | 1.01                                             | 1.07                         |
| 8 | g,   |       | 4    | a <sub>so</sub> | 0.75                                             | -                                       | 0.75                                             | 0.62                         |

 $r_0^* = 1.322 - 7.64 \times 10^{-4} + 44^2 \times 10^{-6} - 84^3 \times 10^{-9},$  $r_0^* = 1.266 - 3.74 \times 10^{-4} + 24^2 \times 10^{-6} - 44^3 \times 10^{-9},$ 

\$\frac{1}{2} (N - Z)/A

\*\* Surface imaginary part has Gaussian form.

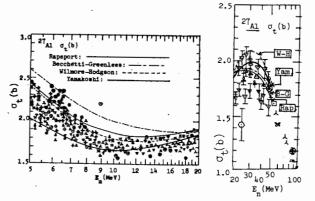



Fig.2 Comparison of calculated total cross sections for <sup>27</sup>Al with experimental data

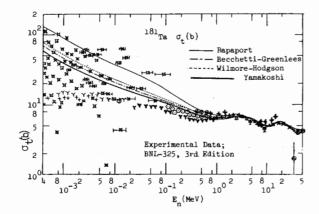
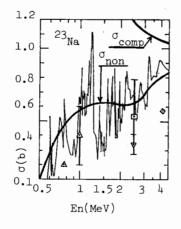
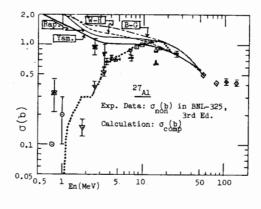





Fig.4 Comparison of calculated total cross sections for 197Au with experimental data

Fig.3 Comparison of calculated total cross sections for  $181\mathrm{Ta}$  with experimental data





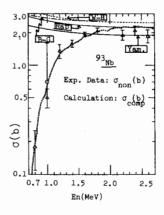
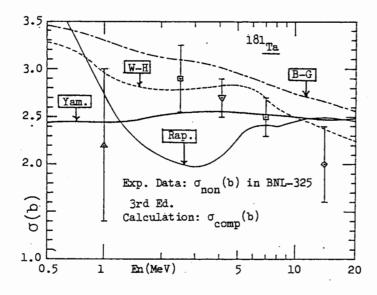




Fig.5  $\sigma_{\text{non}}$  and  $\sigma_{\text{comp}}$  for  $^{23}\text{Na}$  calculated with the Yamakoshi potential

Fig.6 Comparison of calculated cross sections of  $\sigma_{comp}$  for  $^{27}\text{Al}$  with experimental cross section data of  $\sigma_{non}$ 

Fig.7 Comparison of calculated  $\sigma_{\text{comp}}$  cross sections for 93Nb with experimental cross section data of  $\sigma_{\text{non}}$ 



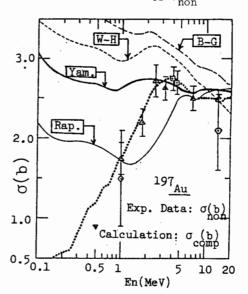



Fig. 8 Comparison of calculated cross sections of  $\sigma_{comp}$  for  $^{181}\text{Ta}$  with experimental cross section data of  $\sigma_{non}$ 

Fig. 9 Comparison of calculated cross sections of  $^{197}\mathrm{Au}$  with experimental cross section data of  $\sigma_{non}$ 

F 53 7

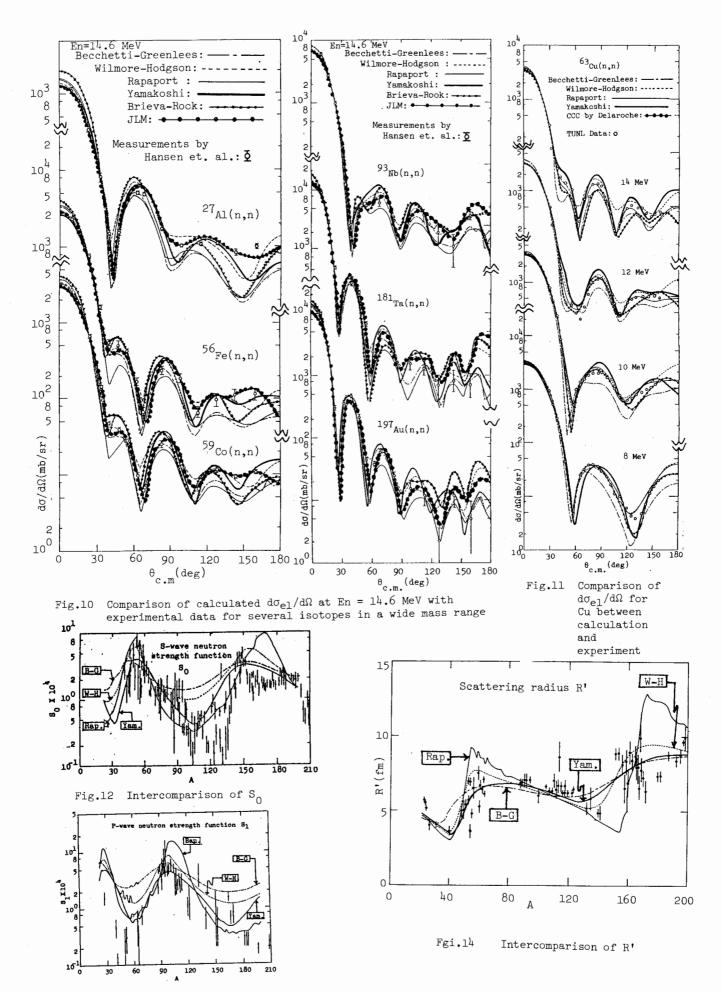



Fig.13 Intercomparison of  $S_1$